ByteString.java

// Protocol Buffers - Google's data interchange format
// Copyright 2008 Google Inc.  All rights reserved.
// https://developers.google.com/protocol-buffers/
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

package com.google.protobuf;

import static com.google.protobuf.TextFormatEscaper.escapeBytes;
import static java.lang.Integer.toHexString;
import static java.lang.System.identityHashCode;

import java.io.ByteArrayInputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InvalidObjectException;
import java.io.ObjectInputStream;
import java.io.OutputStream;
import java.io.Serializable;
import java.io.UnsupportedEncodingException;
import java.nio.ByteBuffer;
import java.nio.charset.Charset;
import java.nio.charset.UnsupportedCharsetException;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Comparator;
import java.util.Iterator;
import java.util.List;
import java.util.Locale;
import java.util.NoSuchElementException;

/**
 * Immutable sequence of bytes. Provides conversions to and from {@code byte[]}, {@link
 * java.lang.String}, {@link ByteBuffer}, {@link InputStream}, {@link OutputStream}. Also provides a
 * conversion to {@link CodedInputStream}.
 *
 * <p>Like {@link String}, the contents of a {@link ByteString} can never be observed to change, not
 * even in the presence of a data race or incorrect API usage in the client code.
 *
 * <p>Substring is supported by sharing the reference to the immutable underlying bytes.
 * Concatenation is likewise supported without copying (long strings) by building a tree of pieces
 * in {@link RopeByteString}.
 *
 * @author crazybob@google.com Bob Lee
 * @author kenton@google.com Kenton Varda
 * @author carlanton@google.com Carl Haverl
 * @author martinrb@google.com Martin Buchholz
 */
public abstract class ByteString implements Iterable<Byte>, Serializable {

  /**
   * When two strings to be concatenated have a combined length shorter than this, we just copy
   * their bytes on {@link #concat(ByteString)}. The trade-off is copy size versus the overhead of
   * creating tree nodes in {@link RopeByteString}.
   */
  static final int CONCATENATE_BY_COPY_SIZE = 128;

  /**
   * When copying an InputStream into a ByteString with .readFrom(), the chunks in the underlying
   * rope start at 256 bytes, but double each iteration up to 8192 bytes.
   */
  static final int MIN_READ_FROM_CHUNK_SIZE = 0x100; // 256b

  static final int MAX_READ_FROM_CHUNK_SIZE = 0x2000; // 8k

  /** Empty {@code ByteString}. */
  public static final ByteString EMPTY = new LiteralByteString(Internal.EMPTY_BYTE_ARRAY);

  /**
   * An interface to efficiently copy {@code byte[]}.
   *
   * <p>One of the noticeable costs of copying a byte[] into a new array using {@code
   * System.arraycopy} is nullification of a new buffer before the copy. It has been shown the
   * Hotspot VM is capable to intrisicfy {@code Arrays.copyOfRange} operation to avoid this
   * expensive nullification and provide substantial performance gain. Unfortunately this does not
   * hold on Android runtimes and could make the copy slightly slower due to additional code in the
   * {@code Arrays.copyOfRange}. Thus we provide two different implementation for array copier for
   * Hotspot and Android runtimes.
   */
  private interface ByteArrayCopier {
    /** Copies the specified range of the specified array into a new array */
    byte[] copyFrom(byte[] bytes, int offset, int size);
  }

  /** Implementation of {@code ByteArrayCopier} which uses {@link System#arraycopy}. */
  private static final class SystemByteArrayCopier implements ByteArrayCopier {
    @Override
    public byte[] copyFrom(byte[] bytes, int offset, int size) {
      byte[] copy = new byte[size];
      System.arraycopy(bytes, offset, copy, 0, size);
      return copy;
    }
  }

  /** Implementation of {@code ByteArrayCopier} which uses {@link Arrays#copyOfRange}. */
  private static final class ArraysByteArrayCopier implements ByteArrayCopier {
    @Override
    public byte[] copyFrom(byte[] bytes, int offset, int size) {
      return Arrays.copyOfRange(bytes, offset, offset + size);
    }
  }

  private static final ByteArrayCopier byteArrayCopier;

  static {
    byteArrayCopier =
        Android.isOnAndroidDevice() ? new SystemByteArrayCopier() : new ArraysByteArrayCopier();
  }

  /**
   * Cached hash value. Intentionally accessed via a data race, which is safe because of the Java
   * Memory Model's "no out-of-thin-air values" guarantees for ints. A value of 0 implies that the
   * hash has not been set.
   */
  private int hash = 0;

  // This constructor is here to prevent subclassing outside of this package,
  ByteString() {}

  /**
   * Gets the byte at the given index. This method should be used only for random access to
   * individual bytes. To access bytes sequentially, use the {@link ByteIterator} returned by {@link
   * #iterator()}, and call {@link #substring(int, int)} first if necessary.
   *
   * @param index index of byte
   * @return the value
   * @throws IndexOutOfBoundsException {@code index < 0 or index >= size}
   */
  public abstract byte byteAt(int index);

  /**
   * Gets the byte at the given index, assumes bounds checking has already been performed.
   *
   * @param index index of byte
   * @return the value
   * @throws IndexOutOfBoundsException {@code index < 0 or index >= size}
   */
  abstract byte internalByteAt(int index);

  /**
   * Return a {@link ByteString.ByteIterator} over the bytes in the ByteString. To avoid
   * auto-boxing, you may get the iterator manually and call {@link ByteIterator#nextByte()}.
   *
   * @return the iterator
   */
  @Override
  public ByteIterator iterator() {
    return new AbstractByteIterator() {
      private int position = 0;
      private final int limit = size();

      @Override
      public boolean hasNext() {
        return position < limit;
      }

      @Override
      public byte nextByte() {
        int currentPos = position;
        if (currentPos >= limit) {
          throw new NoSuchElementException();
        }
        position = currentPos + 1;
        return internalByteAt(currentPos);
      }
    };
  }

  /**
   * This interface extends {@code Iterator<Byte>}, so that we can return an unboxed {@code byte}.
   */
  public interface ByteIterator extends Iterator<Byte> {
    /**
     * An alternative to {@link Iterator#next()} that returns an unboxed primitive {@code byte}.
     *
     * @return the next {@code byte} in the iteration
     * @throws NoSuchElementException if the iteration has no more elements
     */
    byte nextByte();
  }

  abstract static class AbstractByteIterator implements ByteIterator {
    @Override
    public final Byte next() {
      // Boxing calls Byte.valueOf(byte), which does not instantiate.
      return nextByte();
    }

    @Override
    public final void remove() {
      throw new UnsupportedOperationException();
    }
  }

  /**
   * Gets the number of bytes.
   *
   * @return size in bytes
   */
  public abstract int size();

  /**
   * Returns {@code true} if the size is {@code 0}, {@code false} otherwise.
   *
   * @return true if this is zero bytes long
   */
  public final boolean isEmpty() {
    return size() == 0;
  }

  // =================================================================
  // Comparison

  private static final int UNSIGNED_BYTE_MASK = 0xFF;

  /**
   * Returns the value of the given byte as an integer, interpreting the byte as an unsigned value.
   * That is, returns {@code value + 256} if {@code value} is negative; {@code value} itself
   * otherwise.
   *
   * <p>Note: This code was copied from {@link com.google.common.primitives.UnsignedBytes#toInt}, as
   * Guava libraries cannot be used in the {@code com.google.protobuf} package.
   */
  private static int toInt(byte value) {
    return value & UNSIGNED_BYTE_MASK;
  }

  /**
   * Compares two {@link ByteString}s lexicographically, treating their contents as unsigned byte
   * values between 0 and 255 (inclusive).
   *
   * <p>For example, {@code (byte) -1} is considered to be greater than {@code (byte) 1} because it
   * is interpreted as an unsigned value, {@code 255}.
   */
  private static final Comparator<ByteString> UNSIGNED_LEXICOGRAPHICAL_COMPARATOR =
      new Comparator<ByteString>() {
        @Override
        public int compare(ByteString former, ByteString latter) {
          ByteIterator formerBytes = former.iterator();
          ByteIterator latterBytes = latter.iterator();

          while (formerBytes.hasNext() && latterBytes.hasNext()) {
            // Note: This code was copied from com.google.common.primitives.UnsignedBytes#compare,
            // as Guava libraries cannot be used in the {@code com.google.protobuf} package.
            int result =
                Integer.compare(toInt(formerBytes.nextByte()), toInt(latterBytes.nextByte()));
            if (result != 0) {
              return result;
            }
          }

          return Integer.compare(former.size(), latter.size());
        }
      };

  /**
   * Returns a {@link Comparator} which compares {@link ByteString}-s lexicographically
   * as sequences of unsigned bytes (i.e. values between 0 and 255, inclusive).
   *
   * <p>For example, {@code (byte) -1} is considered to be greater than {@code (byte) 1} because it
   * is interpreted as an unsigned value, {@code 255}:
   *
   * <ul>
   *   <li>{@code `-1` -> 0b11111111 (two's complement) -> 255}
   *   <li>{@code `1` -> 0b00000001 -> 1}
   * </ul>
   */
  public static Comparator<ByteString> unsignedLexicographicalComparator() {
    return UNSIGNED_LEXICOGRAPHICAL_COMPARATOR;
  }

  // =================================================================
  // ByteString -> substring

  /**
   * Return the substring from {@code beginIndex}, inclusive, to the end of the string.
   *
   * @param beginIndex start at this index
   * @return substring sharing underlying data
   * @throws IndexOutOfBoundsException if {@code beginIndex < 0} or {@code beginIndex > size()}.
   */
  public final ByteString substring(int beginIndex) {
    return substring(beginIndex, size());
  }

  /**
   * Return the substring from {@code beginIndex}, inclusive, to {@code endIndex}, exclusive.
   *
   * @param beginIndex start at this index
   * @param endIndex the last character is the one before this index
   * @return substring sharing underlying data
   * @throws IndexOutOfBoundsException if {@code beginIndex < 0}, {@code endIndex > size()}, or
   *     {@code beginIndex > endIndex}.
   */
  public abstract ByteString substring(int beginIndex, int endIndex);

  /**
   * Tests if this bytestring starts with the specified prefix. Similar to {@link
   * String#startsWith(String)}
   *
   * @param prefix the prefix.
   * @return <code>true</code> if the byte sequence represented by the argument is a prefix of the
   *     byte sequence represented by this string; <code>false</code> otherwise.
   */
  public final boolean startsWith(ByteString prefix) {
    return size() >= prefix.size() && substring(0, prefix.size()).equals(prefix);
  }

  /**
   * Tests if this bytestring ends with the specified suffix. Similar to {@link
   * String#endsWith(String)}
   *
   * @param suffix the suffix.
   * @return <code>true</code> if the byte sequence represented by the argument is a suffix of the
   *     byte sequence represented by this string; <code>false</code> otherwise.
   */
  public final boolean endsWith(ByteString suffix) {
    return size() >= suffix.size() && substring(size() - suffix.size()).equals(suffix);
  }

  // =================================================================
  // byte[] -> ByteString

  /**
   * Copies the given bytes into a {@code ByteString}.
   *
   * @param bytes source array
   * @param offset offset in source array
   * @param size number of bytes to copy
   * @return new {@code ByteString}
   * @throws IndexOutOfBoundsException if {@code offset} or {@code size} are out of bounds
   */
  public static ByteString copyFrom(byte[] bytes, int offset, int size) {
    checkRange(offset, offset + size, bytes.length);
    return new LiteralByteString(byteArrayCopier.copyFrom(bytes, offset, size));
  }

  /**
   * Copies the given bytes into a {@code ByteString}.
   *
   * @param bytes to copy
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(byte[] bytes) {
    return copyFrom(bytes, 0, bytes.length);
  }

  /** Wraps the given bytes into a {@code ByteString}. Intended for internal only usage. */
  static ByteString wrap(ByteBuffer buffer) {
    if (buffer.hasArray()) {
      final int offset = buffer.arrayOffset();
      return ByteString.wrap(buffer.array(), offset + buffer.position(), buffer.remaining());
    } else {
      return new NioByteString(buffer);
    }
  }

  /**
   * Wraps the given bytes into a {@code ByteString}. Intended for internal only usage to force a
   * classload of ByteString before LiteralByteString.
   */
  static ByteString wrap(byte[] bytes) {
    // TODO(dweis): Return EMPTY when bytes are empty to reduce allocations?
    return new LiteralByteString(bytes);
  }

  /**
   * Wraps the given bytes into a {@code ByteString}. Intended for internal only usage to force a
   * classload of ByteString before BoundedByteString and LiteralByteString.
   */
  static ByteString wrap(byte[] bytes, int offset, int length) {
    return new BoundedByteString(bytes, offset, length);
  }

  /**
   * Copies the next {@code size} bytes from a {@code java.nio.ByteBuffer} into a {@code
   * ByteString}.
   *
   * @param bytes source buffer
   * @param size number of bytes to copy
   * @return new {@code ByteString}
   * @throws IndexOutOfBoundsException if {@code size > bytes.remaining()}
   */
  public static ByteString copyFrom(ByteBuffer bytes, int size) {
    checkRange(0, size, bytes.remaining());
    byte[] copy = new byte[size];
    bytes.get(copy);
    return new LiteralByteString(copy);
  }

  /**
   * Copies the remaining bytes from a {@code java.nio.ByteBuffer} into a {@code ByteString}.
   *
   * @param bytes sourceBuffer
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(ByteBuffer bytes) {
    return copyFrom(bytes, bytes.remaining());
  }

  /**
   * Encodes {@code text} into a sequence of bytes using the named charset and returns the result as
   * a {@code ByteString}.
   *
   * @param text source string
   * @param charsetName encoding to use
   * @return new {@code ByteString}
   * @throws UnsupportedEncodingException if the encoding isn't found
   */
  public static ByteString copyFrom(String text, String charsetName)
      throws UnsupportedEncodingException {
    return new LiteralByteString(text.getBytes(charsetName));
  }

  /**
   * Encodes {@code text} into a sequence of bytes using the named charset and returns the result as
   * a {@code ByteString}.
   *
   * @param text source string
   * @param charset encode using this charset
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(String text, Charset charset) {
    return new LiteralByteString(text.getBytes(charset));
  }

  /**
   * Encodes {@code text} into a sequence of UTF-8 bytes and returns the result as a {@code
   * ByteString}.
   *
   * @param text source string
   * @return new {@code ByteString}
   */
  public static ByteString copyFromUtf8(String text) {
    return new LiteralByteString(text.getBytes(Internal.UTF_8));
  }

  // =================================================================
  // InputStream -> ByteString

  /**
   * Completely reads the given stream's bytes into a {@code ByteString}, blocking if necessary
   * until all bytes are read through to the end of the stream.
   *
   * <p><b>Performance notes:</b> The returned {@code ByteString} is an immutable tree of byte
   * arrays ("chunks") of the stream data. The first chunk is small, with subsequent chunks each
   * being double the size, up to 8K.
   *
   * <p>Each byte read from the input stream will be copied twice to ensure that the resulting
   * ByteString is truly immutable.
   *
   * @param streamToDrain The source stream, which is read completely but not closed.
   * @return A new {@code ByteString} which is made up of chunks of various sizes, depending on the
   *     behavior of the underlying stream.
   * @throws IOException IOException is thrown if there is a problem reading the underlying stream.
   */
  public static ByteString readFrom(InputStream streamToDrain) throws IOException {
    return readFrom(streamToDrain, MIN_READ_FROM_CHUNK_SIZE, MAX_READ_FROM_CHUNK_SIZE);
  }

  /**
   * Completely reads the given stream's bytes into a {@code ByteString}, blocking if necessary
   * until all bytes are read through to the end of the stream.
   *
   * <p><b>Performance notes:</b> The returned {@code ByteString} is an immutable tree of byte
   * arrays ("chunks") of the stream data. The chunkSize parameter sets the size of these byte
   * arrays.
   *
   * <p>Each byte read from the input stream will be copied twice to ensure that the resulting
   * ByteString is truly immutable.
   *
   * @param streamToDrain The source stream, which is read completely but not closed.
   * @param chunkSize The size of the chunks in which to read the stream.
   * @return A new {@code ByteString} which is made up of chunks of the given size.
   * @throws IOException IOException is thrown if there is a problem reading the underlying stream.
   */
  public static ByteString readFrom(InputStream streamToDrain, int chunkSize) throws IOException {
    return readFrom(streamToDrain, chunkSize, chunkSize);
  }

  // Helper method that takes the chunk size range as a parameter.
  public static ByteString readFrom(InputStream streamToDrain, int minChunkSize, int maxChunkSize)
      throws IOException {
    Collection<ByteString> results = new ArrayList<ByteString>();

    // copy the inbound bytes into a list of chunks; the chunk size
    // grows exponentially to support both short and long streams.
    int chunkSize = minChunkSize;
    while (true) {
      ByteString chunk = readChunk(streamToDrain, chunkSize);
      if (chunk == null) {
        break;
      }
      results.add(chunk);
      chunkSize = Math.min(chunkSize * 2, maxChunkSize);
    }

    return ByteString.copyFrom(results);
  }

  /**
   * Blocks until a chunk of the given size can be made from the stream, or EOF is reached. Calls
   * read() repeatedly in case the given stream implementation doesn't completely fill the given
   * buffer in one read() call.
   *
   * @return A chunk of the desired size, or else a chunk as large as was available when end of
   *     stream was reached. Returns null if the given stream had no more data in it.
   */
  private static ByteString readChunk(InputStream in, final int chunkSize) throws IOException {
    final byte[] buf = new byte[chunkSize];
    int bytesRead = 0;
    while (bytesRead < chunkSize) {
      final int count = in.read(buf, bytesRead, chunkSize - bytesRead);
      if (count == -1) {
        break;
      }
      bytesRead += count;
    }

    if (bytesRead == 0) {
      return null;
    }

    // Always make a copy since InputStream could steal a reference to buf.
    return ByteString.copyFrom(buf, 0, bytesRead);
  }

  // =================================================================
  // Multiple ByteStrings -> One ByteString

  /**
   * Concatenate the given {@code ByteString} to this one. Short concatenations, of total size
   * smaller than {@link ByteString#CONCATENATE_BY_COPY_SIZE}, are produced by copying the
   * underlying bytes (as per Rope.java, <a
   * href="http://www.cs.ubc.ca/local/reading/proceedings/spe91-95/spe/vol25/issue12/spe986.pdf">
   * BAP95 </a>. In general, the concatenate involves no copying.
   *
   * @param other string to concatenate
   * @return a new {@code ByteString} instance
   */
  public final ByteString concat(ByteString other) {
    if (Integer.MAX_VALUE - size() < other.size()) {
      throw new IllegalArgumentException(
          "ByteString would be too long: " + size() + "+" + other.size());
    }

    return RopeByteString.concatenate(this, other);
  }

  /**
   * Concatenates all byte strings in the iterable and returns the result. This is designed to run
   * in O(list size), not O(total bytes).
   *
   * <p>The returned {@code ByteString} is not necessarily a unique object. If the list is empty,
   * the returned object is the singleton empty {@code ByteString}. If the list has only one
   * element, that {@code ByteString} will be returned without copying.
   *
   * @param byteStrings strings to be concatenated
   * @return new {@code ByteString}
   */
  public static ByteString copyFrom(Iterable<ByteString> byteStrings) {
    // Determine the size;
    final int size;
    if (!(byteStrings instanceof Collection)) {
      int tempSize = 0;
      for (Iterator<ByteString> iter = byteStrings.iterator();
          iter.hasNext();
          iter.next(), ++tempSize) {}
      size = tempSize;
    } else {
      size = ((Collection<ByteString>) byteStrings).size();
    }

    if (size == 0) {
      return EMPTY;
    }

    return balancedConcat(byteStrings.iterator(), size);
  }

  // Internal function used by copyFrom(Iterable<ByteString>).
  // Create a balanced concatenation of the next "length" elements from the
  // iterable.
  private static ByteString balancedConcat(Iterator<ByteString> iterator, int length) {
    if (length < 1) {
      throw new IllegalArgumentException(String.format("length (%s) must be >= 1", length));
    }
    ByteString result;
    if (length == 1) {
      result = iterator.next();
    } else {
      int halfLength = length >>> 1;
      ByteString left = balancedConcat(iterator, halfLength);
      ByteString right = balancedConcat(iterator, length - halfLength);
      result = left.concat(right);
    }
    return result;
  }

  // =================================================================
  // ByteString -> byte[]

  /**
   * Copies bytes into a buffer at the given offset.
   *
   * <p>To copy a subset of bytes, you call this method on the return value of {@link
   * #substring(int, int)}. Example: {@code byteString.substring(start, end).copyTo(target, offset)}
   *
   * @param target buffer to copy into
   * @param offset in the target buffer
   * @throws IndexOutOfBoundsException if the offset is negative or too large
   */
  public void copyTo(byte[] target, int offset) {
    copyTo(target, 0, offset, size());
  }

  /**
   * Copies bytes into a buffer.
   *
   * @param target buffer to copy into
   * @param sourceOffset offset within these bytes
   * @param targetOffset offset within the target buffer
   * @param numberToCopy number of bytes to copy
   * @throws IndexOutOfBoundsException if an offset or size is negative or too large
   * @deprecated Instead, call {@code byteString.substring(sourceOffset, sourceOffset +
   *     numberToCopy).copyTo(target, targetOffset)}
   */
  @Deprecated
  public final void copyTo(byte[] target, int sourceOffset, int targetOffset, int numberToCopy) {
    checkRange(sourceOffset, sourceOffset + numberToCopy, size());
    checkRange(targetOffset, targetOffset + numberToCopy, target.length);
    if (numberToCopy > 0) {
      copyToInternal(target, sourceOffset, targetOffset, numberToCopy);
    }
  }

  /**
   * Internal (package private) implementation of {@link #copyTo(byte[],int,int,int)}. It assumes
   * that all error checking has already been performed and that {@code numberToCopy > 0}.
   */
  protected abstract void copyToInternal(
      byte[] target, int sourceOffset, int targetOffset, int numberToCopy);

  /**
   * Copies bytes into a ByteBuffer.
   *
   * <p>To copy a subset of bytes, you call this method on the return value of {@link
   * #substring(int, int)}. Example: {@code byteString.substring(start, end).copyTo(target)}
   *
   * @param target ByteBuffer to copy into.
   * @throws java.nio.ReadOnlyBufferException if the {@code target} is read-only
   * @throws java.nio.BufferOverflowException if the {@code target}'s remaining() space is not large
   *     enough to hold the data.
   */
  public abstract void copyTo(ByteBuffer target);

  /**
   * Copies bytes to a {@code byte[]}.
   *
   * @return copied bytes
   */
  public final byte[] toByteArray() {
    final int size = size();
    if (size == 0) {
      return Internal.EMPTY_BYTE_ARRAY;
    }
    byte[] result = new byte[size];
    copyToInternal(result, 0, 0, size);
    return result;
  }

  /**
   * Writes a copy of the contents of this byte string to the specified output stream argument.
   *
   * @param out the output stream to which to write the data.
   * @throws IOException if an I/O error occurs.
   */
  public abstract void writeTo(OutputStream out) throws IOException;

  /**
   * Writes a specified part of this byte string to an output stream.
   *
   * @param out the output stream to which to write the data.
   * @param sourceOffset offset within these bytes
   * @param numberToWrite number of bytes to write
   * @throws IOException if an I/O error occurs.
   * @throws IndexOutOfBoundsException if an offset or size is negative or too large
   */
  final void writeTo(OutputStream out, int sourceOffset, int numberToWrite) throws IOException {
    checkRange(sourceOffset, sourceOffset + numberToWrite, size());
    if (numberToWrite > 0) {
      writeToInternal(out, sourceOffset, numberToWrite);
    }
  }

  /**
   * Internal version of {@link #writeTo(OutputStream,int,int)} that assumes all error checking has
   * already been done.
   */
  abstract void writeToInternal(OutputStream out, int sourceOffset, int numberToWrite)
      throws IOException;

  /**
   * Writes this {@link ByteString} to the provided {@link ByteOutput}. Calling this method may
   * result in multiple operations on the target {@link ByteOutput}.
   *
   * <p>This method may expose internal backing buffers of the {@link ByteString} to the {@link
   * ByteOutput} in order to avoid additional copying overhead. It would be possible for a malicious
   * {@link ByteOutput} to corrupt the {@link ByteString}. Use with caution!
   *
   * @param byteOutput the output target to receive the bytes
   * @throws IOException if an I/O error occurs
   * @see UnsafeByteOperations#unsafeWriteTo(ByteString, ByteOutput)
   */
  abstract void writeTo(ByteOutput byteOutput) throws IOException;

  /**
   * This method behaves exactly the same as {@link #writeTo(ByteOutput)} unless the {@link
   * ByteString} is a rope. For ropes, the leaf nodes are written in reverse order to the {@code
   * byteOutput}.
   *
   * @param byteOutput the output target to receive the bytes
   * @throws IOException if an I/O error occurs
   * @see UnsafeByteOperations#unsafeWriteToReverse(ByteString, ByteOutput)
   */
  abstract void writeToReverse(ByteOutput byteOutput) throws IOException;

  /**
   * Constructs a read-only {@code java.nio.ByteBuffer} whose content is equal to the contents of
   * this byte string. The result uses the same backing array as the byte string, if possible.
   *
   * @return wrapped bytes
   */
  public abstract ByteBuffer asReadOnlyByteBuffer();

  /**
   * Constructs a list of read-only {@code java.nio.ByteBuffer} objects such that the concatenation
   * of their contents is equal to the contents of this byte string. The result uses the same
   * backing arrays as the byte string.
   *
   * <p>By returning a list, implementations of this method may be able to avoid copying even when
   * there are multiple backing arrays.
   *
   * @return a list of wrapped bytes
   */
  public abstract List<ByteBuffer> asReadOnlyByteBufferList();

  /**
   * Constructs a new {@code String} by decoding the bytes using the specified charset.
   *
   * @param charsetName encode using this charset
   * @return new string
   * @throws UnsupportedEncodingException if charset isn't recognized
   */
  public final String toString(String charsetName) throws UnsupportedEncodingException {
    try {
      return toString(Charset.forName(charsetName));
    } catch (UnsupportedCharsetException e) {
      UnsupportedEncodingException exception = new UnsupportedEncodingException(charsetName);
      exception.initCause(e);
      throw exception;
    }
  }

  /**
   * Constructs a new {@code String} by decoding the bytes using the specified charset. Returns the
   * same empty String if empty.
   *
   * @param charset encode using this charset
   * @return new string
   */
  public final String toString(Charset charset) {
    return size() == 0 ? "" : toStringInternal(charset);
  }

  /**
   * Constructs a new {@code String} by decoding the bytes using the specified charset.
   *
   * @param charset encode using this charset
   * @return new string
   */
  protected abstract String toStringInternal(Charset charset);

  // =================================================================
  // UTF-8 decoding

  /**
   * Constructs a new {@code String} by decoding the bytes as UTF-8.
   *
   * @return new string using UTF-8 encoding
   */
  public final String toStringUtf8() {
    return toString(Internal.UTF_8);
  }

  /**
   * Tells whether this {@code ByteString} represents a well-formed UTF-8 byte sequence, such that
   * the original bytes can be converted to a String object and then round tripped back to bytes
   * without loss.
   *
   * <p>More precisely, returns {@code true} whenever:
   *
   * <pre>{@code
   * Arrays.equals(byteString.toByteArray(),
   *     new String(byteString.toByteArray(), "UTF-8").getBytes("UTF-8"))
   * }</pre>
   *
   * <p>This method returns {@code false} for "overlong" byte sequences, as well as for 3-byte
   * sequences that would map to a surrogate character, in accordance with the restricted definition
   * of UTF-8 introduced in Unicode 3.1. Note that the UTF-8 decoder included in Oracle's JDK has
   * been modified to also reject "overlong" byte sequences, but (as of 2011) still accepts 3-byte
   * surrogate character byte sequences.
   *
   * <p>See the Unicode Standard,<br>
   * Table 3-6. <em>UTF-8 Bit Distribution</em>,<br>
   * Table 3-7. <em>Well Formed UTF-8 Byte Sequences</em>.
   *
   * @return whether the bytes in this {@code ByteString} are a well-formed UTF-8 byte sequence
   */
  public abstract boolean isValidUtf8();

  /**
   * Tells whether the given byte sequence is a well-formed, malformed, or incomplete UTF-8 byte
   * sequence. This method accepts and returns a partial state result, allowing the bytes for a
   * complete UTF-8 byte sequence to be composed from multiple {@code ByteString} segments.
   *
   * @param state either {@code 0} (if this is the initial decoding operation) or the value returned
   *     from a call to a partial decoding method for the previous bytes
   * @param offset offset of the first byte to check
   * @param length number of bytes to check
   * @return {@code -1} if the partial byte sequence is definitely malformed, {@code 0} if it is
   *     well-formed (no additional input needed), or, if the byte sequence is "incomplete", i.e.
   *     apparently terminated in the middle of a character, an opaque integer "state" value
   *     containing enough information to decode the character when passed to a subsequent
   *     invocation of a partial decoding method.
   */
  protected abstract int partialIsValidUtf8(int state, int offset, int length);

  // =================================================================
  // equals() and hashCode()

  @Override
  public abstract boolean equals(Object o);

  /** Base class for leaf {@link ByteString}s (i.e. non-ropes). */
  abstract static class LeafByteString extends ByteString {
    @Override
    protected final int getTreeDepth() {
      return 0;
    }

    @Override
    protected final boolean isBalanced() {
      return true;
    }

    @Override
    void writeToReverse(ByteOutput byteOutput) throws IOException {
      writeTo(byteOutput);
    }

    /**
     * Check equality of the substring of given length of this object starting at zero with another
     * {@code ByteString} substring starting at offset.
     *
     * @param other what to compare a substring in
     * @param offset offset into other
     * @param length number of bytes to compare
     * @return true for equality of substrings, else false.
     */
    abstract boolean equalsRange(ByteString other, int offset, int length);
  }

  /**
   * Compute the hashCode using the traditional algorithm from {@link ByteString}.
   *
   * @return hashCode value
   */
  @Override
  public final int hashCode() {
    int h = hash;

    if (h == 0) {
      int size = size();
      h = partialHash(size, 0, size);
      if (h == 0) {
        h = 1;
      }
      hash = h;
    }
    return h;
  }

  // =================================================================
  // Input stream

  /**
   * Creates an {@code InputStream} which can be used to read the bytes.
   *
   * <p>The {@link InputStream} returned by this method is guaranteed to be completely non-blocking.
   * The method {@link InputStream#available()} returns the number of bytes remaining in the stream.
   * The methods {@link InputStream#read(byte[])}, {@link InputStream#read(byte[],int,int)} and
   * {@link InputStream#skip(long)} will read/skip as many bytes as are available. The method {@link
   * InputStream#markSupported()} returns {@code true}.
   *
   * <p>The methods in the returned {@link InputStream} might <b>not</b> be thread safe.
   *
   * @return an input stream that returns the bytes of this byte string.
   */
  public abstract InputStream newInput();

  /**
   * Creates a {@link CodedInputStream} which can be used to read the bytes. Using this is often
   * more efficient than creating a {@link CodedInputStream} that wraps the result of {@link
   * #newInput()}.
   *
   * @return stream based on wrapped data
   */
  public abstract CodedInputStream newCodedInput();

  // =================================================================
  // Output stream

  /**
   * Creates a new {@link Output} with the given initial capacity. Call {@link
   * Output#toByteString()} to create the {@code ByteString} instance.
   *
   * <p>A {@link ByteString.Output} offers the same functionality as a {@link
   * ByteArrayOutputStream}, except that it returns a {@link ByteString} rather than a {@code byte}
   * array.
   *
   * @param initialCapacity estimate of number of bytes to be written
   * @return {@code OutputStream} for building a {@code ByteString}
   */
  public static Output newOutput(int initialCapacity) {
    return new Output(initialCapacity);
  }

  /**
   * Creates a new {@link Output}. Call {@link Output#toByteString()} to create the {@code
   * ByteString} instance.
   *
   * <p>A {@link ByteString.Output} offers the same functionality as a {@link
   * ByteArrayOutputStream}, except that it returns a {@link ByteString} rather than a {@code byte
   * array}.
   *
   * @return {@code OutputStream} for building a {@code ByteString}
   */
  public static Output newOutput() {
    return new Output(CONCATENATE_BY_COPY_SIZE);
  }

  /**
   * Outputs to a {@code ByteString} instance. Call {@link #toByteString()} to create the {@code
   * ByteString} instance.
   */
  public static final class Output extends OutputStream {
    // Implementation note.
    // The public methods of this class must be synchronized.  ByteStrings
    // are guaranteed to be immutable.  Without some sort of locking, it could
    // be possible for one thread to call toByteSring(), while another thread
    // is still modifying the underlying byte array.

    private static final byte[] EMPTY_BYTE_ARRAY = new byte[0];
    // argument passed by user, indicating initial capacity.
    private final int initialCapacity;
    // ByteStrings to be concatenated to create the result
    private final ArrayList<ByteString> flushedBuffers;
    // Total number of bytes in the ByteStrings of flushedBuffers
    private int flushedBuffersTotalBytes;
    // Current buffer to which we are writing
    private byte[] buffer;
    // Location in buffer[] to which we write the next byte.
    private int bufferPos;

    /**
     * Creates a new ByteString output stream with the specified initial capacity.
     *
     * @param initialCapacity the initial capacity of the output stream.
     */
    Output(int initialCapacity) {
      if (initialCapacity < 0) {
        throw new IllegalArgumentException("Buffer size < 0");
      }
      this.initialCapacity = initialCapacity;
      this.flushedBuffers = new ArrayList<ByteString>();
      this.buffer = new byte[initialCapacity];
    }

    @Override
    public synchronized void write(int b) {
      if (bufferPos == buffer.length) {
        flushFullBuffer(1);
      }
      buffer[bufferPos++] = (byte) b;
    }

    @Override
    public synchronized void write(byte[] b, int offset, int length) {
      if (length <= buffer.length - bufferPos) {
        // The bytes can fit into the current buffer.
        System.arraycopy(b, offset, buffer, bufferPos, length);
        bufferPos += length;
      } else {
        // Use up the current buffer
        int copySize = buffer.length - bufferPos;
        System.arraycopy(b, offset, buffer, bufferPos, copySize);
        offset += copySize;
        length -= copySize;
        // Flush the buffer, and get a new buffer at least big enough to cover
        // what we still need to output
        flushFullBuffer(length);
        System.arraycopy(b, offset, buffer, /* count= */ 0, length);
        bufferPos = length;
      }
    }

    /**
     * Creates a byte string. Its size is the current size of this output stream and its output has
     * been copied to it.
     *
     * @return the current contents of this output stream, as a byte string.
     */
    public synchronized ByteString toByteString() {
      flushLastBuffer();
      return ByteString.copyFrom(flushedBuffers);
    }

    /** Implement java.util.Arrays.copyOf() for jdk 1.5. */
    private byte[] copyArray(byte[] buffer, int length) {
      byte[] result = new byte[length];
      System.arraycopy(buffer, 0, result, 0, Math.min(buffer.length, length));
      return result;
    }

    /**
     * Writes the complete contents of this byte array output stream to the specified output stream
     * argument.
     *
     * @param out the output stream to which to write the data.
     * @throws IOException if an I/O error occurs.
     */
    public void writeTo(OutputStream out) throws IOException {
      ByteString[] cachedFlushBuffers;
      byte[] cachedBuffer;
      int cachedBufferPos;
      synchronized (this) {
        // Copy the information we need into local variables so as to hold
        // the lock for as short a time as possible.
        cachedFlushBuffers = flushedBuffers.toArray(new ByteString[flushedBuffers.size()]);
        cachedBuffer = buffer;
        cachedBufferPos = bufferPos;
      }
      for (ByteString byteString : cachedFlushBuffers) {
        byteString.writeTo(out);
      }

      out.write(copyArray(cachedBuffer, cachedBufferPos));
    }

    /**
     * Returns the current size of the output stream.
     *
     * @return the current size of the output stream
     */
    public synchronized int size() {
      return flushedBuffersTotalBytes + bufferPos;
    }

    /**
     * Resets this stream, so that all currently accumulated output in the output stream is
     * discarded. The output stream can be used again, reusing the already allocated buffer space.
     */
    public synchronized void reset() {
      flushedBuffers.clear();
      flushedBuffersTotalBytes = 0;
      bufferPos = 0;
    }

    @Override
    public String toString() {
      return String.format(
          "<ByteString.Output@%s size=%d>",
          Integer.toHexString(System.identityHashCode(this)), size());
    }

    /**
     * Internal function used by writers. The current buffer is full, and the writer needs a new
     * buffer whose size is at least the specified minimum size.
     */
    private void flushFullBuffer(int minSize) {
      flushedBuffers.add(new LiteralByteString(buffer));
      flushedBuffersTotalBytes += buffer.length;
      // We want to increase our total capacity by 50%, but as a minimum,
      // the new buffer should also at least be >= minSize and
      // >= initial Capacity.
      int newSize = Math.max(initialCapacity, Math.max(minSize, flushedBuffersTotalBytes >>> 1));
      buffer = new byte[newSize];
      bufferPos = 0;
    }

    /**
     * Internal function used by {@link #toByteString()}. The current buffer may or may not be full,
     * but it needs to be flushed.
     */
    private void flushLastBuffer() {
      if (bufferPos < buffer.length) {
        if (bufferPos > 0) {
          byte[] bufferCopy = copyArray(buffer, bufferPos);
          flushedBuffers.add(new LiteralByteString(bufferCopy));
        }
        // We reuse this buffer for further writes.
      } else {
        // Buffer is completely full.  Huzzah.
        flushedBuffers.add(new LiteralByteString(buffer));
        // 99% of the time, we're not going to use this OutputStream again.
        // We set buffer to an empty byte stream so that we're handling this
        // case without wasting space.  In the rare case that more writes
        // *do* occur, this empty buffer will be flushed and an appropriately
        // sized new buffer will be created.
        buffer = EMPTY_BYTE_ARRAY;
      }
      flushedBuffersTotalBytes += bufferPos;
      bufferPos = 0;
    }
  }

  /**
   * Constructs a new {@code ByteString} builder, which allows you to efficiently construct a {@code
   * ByteString} by writing to a {@link CodedOutputStream}. Using this is much more efficient than
   * calling {@code newOutput()} and wrapping that in a {@code CodedOutputStream}.
   *
   * <p>This is package-private because it's a somewhat confusing interface. Users can call {@link
   * Message#toByteString()} instead of calling this directly.
   *
   * @param size The target byte size of the {@code ByteString}. You must write exactly this many
   *     bytes before building the result.
   * @return the builder
   */
  static CodedBuilder newCodedBuilder(int size) {
    return new CodedBuilder(size);
  }

  /** See {@link ByteString#newCodedBuilder(int)}. */
  static final class CodedBuilder {
    private final CodedOutputStream output;
    private final byte[] buffer;

    private CodedBuilder(int size) {
      buffer = new byte[size];
      output = CodedOutputStream.newInstance(buffer);
    }

    public ByteString build() {
      output.checkNoSpaceLeft();

      // We can be confident that the CodedOutputStream will not modify the
      // underlying bytes anymore because it already wrote all of them.  So,
      // no need to make a copy.
      return new LiteralByteString(buffer);
    }

    public CodedOutputStream getCodedOutput() {
      return output;
    }
  }

  // =================================================================
  // Methods {@link RopeByteString} needs on instances, which aren't part of the
  // public API.

  /**
   * Return the depth of the tree representing this {@code ByteString}, if any, whose root is this
   * node. If this is a leaf node, return 0.
   *
   * @return tree depth or zero
   */
  protected abstract int getTreeDepth();

  /**
   * Return {@code true} if this ByteString is literal (a leaf node) or a flat-enough tree in the
   * sense of {@link RopeByteString}.
   *
   * @return true if the tree is flat enough
   */
  protected abstract boolean isBalanced();

  /**
   * Return the cached hash code if available.
   *
   * @return value of cached hash code or 0 if not computed yet
   */
  protected final int peekCachedHashCode() {
    return hash;
  }

  /**
   * Compute the hash across the value bytes starting with the given hash, and return the result.
   * This is used to compute the hash across strings represented as a set of pieces by allowing the
   * hash computation to be continued from piece to piece.
   *
   * @param h starting hash value
   * @param offset offset into this value to start looking at data values
   * @param length number of data values to include in the hash computation
   * @return ending hash value
   */
  protected abstract int partialHash(int h, int offset, int length);

  /**
   * Checks that the given index falls within the specified array size.
   *
   * @param index the index position to be tested
   * @param size the length of the array
   * @throws IndexOutOfBoundsException if the index does not fall within the array.
   */
  static void checkIndex(int index, int size) {
    if ((index | (size - (index + 1))) < 0) {
      if (index < 0) {
        throw new ArrayIndexOutOfBoundsException("Index < 0: " + index);
      }
      throw new ArrayIndexOutOfBoundsException("Index > length: " + index + ", " + size);
    }
  }

  /**
   * Checks that the given range falls within the bounds of an array
   *
   * @param startIndex the start index of the range (inclusive)
   * @param endIndex the end index of the range (exclusive)
   * @param size the size of the array.
   * @return the length of the range.
   * @throws IndexOutOfBoundsException some or all of the range falls outside of the array.
   */
  static int checkRange(int startIndex, int endIndex, int size) {
    final int length = endIndex - startIndex;
    if ((startIndex | endIndex | length | (size - endIndex)) < 0) {
      if (startIndex < 0) {
        throw new IndexOutOfBoundsException("Beginning index: " + startIndex + " < 0");
      }
      if (endIndex < startIndex) {
        throw new IndexOutOfBoundsException(
            "Beginning index larger than ending index: " + startIndex + ", " + endIndex);
      }
      // endIndex >= size
      throw new IndexOutOfBoundsException("End index: " + endIndex + " >= " + size);
    }
    return length;
  }

  @Override
  public final String toString() {
    return String.format(
        Locale.ROOT,
        "<ByteString@%s size=%d contents=\"%s\">",
        toHexString(identityHashCode(this)),
        size(),
        truncateAndEscapeForDisplay());
  }

  private String truncateAndEscapeForDisplay() {
    final int limit = 50;

    return size() <= limit ? escapeBytes(this) : escapeBytes(substring(0, limit - 3)) + "...";
  }

  /**
   * This class implements a {@link com.google.protobuf.ByteString} backed by a single array of
   * bytes, contiguous in memory. It supports substring by pointing to only a sub-range of the
   * underlying byte array, meaning that a substring will reference the full byte-array of the
   * string it's made from, exactly as with {@link String}.
   *
   * @author carlanton@google.com (Carl Haverl)
   */
  // Keep this class private to avoid deadlocks in classloading across threads as ByteString's
  // static initializer loads LiteralByteString and another thread loads LiteralByteString.
  private static class LiteralByteString extends ByteString.LeafByteString {
    private static final long serialVersionUID = 1L;

    protected final byte[] bytes;

    /**
     * Creates a {@code LiteralByteString} backed by the given array, without copying.
     *
     * @param bytes array to wrap
     */
    LiteralByteString(byte[] bytes) {
      if (bytes == null) {
        throw new NullPointerException();
      }
      this.bytes = bytes;
    }

    @Override
    public byte byteAt(int index) {
      // Unlike most methods in this class, this one is a direct implementation
      // ignoring the potential offset because we need to do range-checking in the
      // substring case anyway.
      return bytes[index];
    }

    @Override
    byte internalByteAt(int index) {
      return bytes[index];
    }

    @Override
    public int size() {
      return bytes.length;
    }

    // =================================================================
    // ByteString -> substring

    @Override
    public final ByteString substring(int beginIndex, int endIndex) {
      final int length = checkRange(beginIndex, endIndex, size());

      if (length == 0) {
        return ByteString.EMPTY;
      }

      return new BoundedByteString(bytes, getOffsetIntoBytes() + beginIndex, length);
    }

    // =================================================================
    // ByteString -> byte[]

    @Override
    protected void copyToInternal(
        byte[] target, int sourceOffset, int targetOffset, int numberToCopy) {
      // Optimized form, not for subclasses, since we don't call
      // getOffsetIntoBytes() or check the 'numberToCopy' parameter.
      // TODO(nathanmittler): Is not calling getOffsetIntoBytes really saving that much?
      System.arraycopy(bytes, sourceOffset, target, targetOffset, numberToCopy);
    }

    @Override
    public final void copyTo(ByteBuffer target) {
      target.put(bytes, getOffsetIntoBytes(), size()); // Copies bytes
    }

    @Override
    public final ByteBuffer asReadOnlyByteBuffer() {
      return ByteBuffer.wrap(bytes, getOffsetIntoBytes(), size()).asReadOnlyBuffer();
    }

    @Override
    public final List<ByteBuffer> asReadOnlyByteBufferList() {
      return Collections.singletonList(asReadOnlyByteBuffer());
    }

    @Override
    public final void writeTo(OutputStream outputStream) throws IOException {
      outputStream.write(toByteArray());
    }

    @Override
    final void writeToInternal(OutputStream outputStream, int sourceOffset, int numberToWrite)
        throws IOException {
      outputStream.write(bytes, getOffsetIntoBytes() + sourceOffset, numberToWrite);
    }

    @Override
    final void writeTo(ByteOutput output) throws IOException {
      output.writeLazy(bytes, getOffsetIntoBytes(), size());
    }

    @Override
    protected final String toStringInternal(Charset charset) {
      return new String(bytes, getOffsetIntoBytes(), size(), charset);
    }

    // =================================================================
    // UTF-8 decoding

    @Override
    public final boolean isValidUtf8() {
      int offset = getOffsetIntoBytes();
      return Utf8.isValidUtf8(bytes, offset, offset + size());
    }

    @Override
    protected final int partialIsValidUtf8(int state, int offset, int length) {
      int index = getOffsetIntoBytes() + offset;
      return Utf8.partialIsValidUtf8(state, bytes, index, index + length);
    }

    // =================================================================
    // equals() and hashCode()

    @Override
    public final boolean equals(Object other) {
      if (other == this) {
        return true;
      }
      if (!(other instanceof ByteString)) {
        return false;
      }

      if (size() != ((ByteString) other).size()) {
        return false;
      }
      if (size() == 0) {
        return true;
      }

      if (other instanceof LiteralByteString) {
        LiteralByteString otherAsLiteral = (LiteralByteString) other;
        // If we know the hash codes and they are not equal, we know the byte
        // strings are not equal.
        int thisHash = peekCachedHashCode();
        int thatHash = otherAsLiteral.peekCachedHashCode();
        if (thisHash != 0 && thatHash != 0 && thisHash != thatHash) {
          return false;
        }

        return equalsRange((LiteralByteString) other, 0, size());
      } else {
        // RopeByteString and NioByteString.
        return other.equals(this);
      }
    }

    /**
     * Check equality of the substring of given length of this object starting at zero with another
     * {@code LiteralByteString} substring starting at offset.
     *
     * @param other what to compare a substring in
     * @param offset offset into other
     * @param length number of bytes to compare
     * @return true for equality of substrings, else false.
     */
    @Override
    final boolean equalsRange(ByteString other, int offset, int length) {
      if (length > other.size()) {
        throw new IllegalArgumentException("Length too large: " + length + size());
      }
      if (offset + length > other.size()) {
        throw new IllegalArgumentException(
            "Ran off end of other: " + offset + ", " + length + ", " + other.size());
      }

      if (other instanceof LiteralByteString) {
        LiteralByteString lbsOther = (LiteralByteString) other;
        byte[] thisBytes = bytes;
        byte[] otherBytes = lbsOther.bytes;
        int thisLimit = getOffsetIntoBytes() + length;
        for (int thisIndex = getOffsetIntoBytes(),
                otherIndex = lbsOther.getOffsetIntoBytes() + offset;
            (thisIndex < thisLimit);
            ++thisIndex, ++otherIndex) {
          if (thisBytes[thisIndex] != otherBytes[otherIndex]) {
            return false;
          }
        }
        return true;
      }

      return other.substring(offset, offset + length).equals(substring(0, length));
    }

    @Override
    protected final int partialHash(int h, int offset, int length) {
      return Internal.partialHash(h, bytes, getOffsetIntoBytes() + offset, length);
    }

    // =================================================================
    // Input stream

    @Override
    public final InputStream newInput() {
      return new ByteArrayInputStream(bytes, getOffsetIntoBytes(), size()); // No copy
    }

    @Override
    public final CodedInputStream newCodedInput() {
      // We trust CodedInputStream not to modify the bytes, or to give anyone
      // else access to them.
      return CodedInputStream.newInstance(
          bytes, getOffsetIntoBytes(), size(), /* bufferIsImmutable= */ true);
    }

    // =================================================================
    // Internal methods

    /**
     * Offset into {@code bytes[]} to use, non-zero for substrings.
     *
     * @return always 0 for this class
     */
    protected int getOffsetIntoBytes() {
      return 0;
    }
  }

  /**
   * This class is used to represent the substring of a {@link ByteString} over a single byte array.
   * In terms of the public API of {@link ByteString}, you end up here by calling {@link
   * ByteString#copyFrom(byte[])} followed by {@link ByteString#substring(int, int)}.
   *
   * <p>This class contains most of the overhead involved in creating a substring from a {@link
   * LiteralByteString}. The overhead involves some range-checking and two extra fields.
   *
   * @author carlanton@google.com (Carl Haverl)
   */
  // Keep this class private to avoid deadlocks in classloading across threads as ByteString's
  // static initializer loads LiteralByteString and another thread loads BoundedByteString.
  private static final class BoundedByteString extends LiteralByteString {

    private final int bytesOffset;
    private final int bytesLength;

    /**
     * Creates a {@code BoundedByteString} backed by the sub-range of given array, without copying.
     *
     * @param bytes array to wrap
     * @param offset index to first byte to use in bytes
     * @param length number of bytes to use from bytes
     * @throws IllegalArgumentException if {@code offset < 0}, {@code length < 0}, or if {@code
     *     offset + length > bytes.length}.
     */
    BoundedByteString(byte[] bytes, int offset, int length) {
      super(bytes);
      checkRange(offset, offset + length, bytes.length);

      this.bytesOffset = offset;
      this.bytesLength = length;
    }

    /**
     * Gets the byte at the given index. Throws {@link ArrayIndexOutOfBoundsException} for
     * backwards-compatibility reasons although it would more properly be {@link
     * IndexOutOfBoundsException}.
     *
     * @param index index of byte
     * @return the value
     * @throws ArrayIndexOutOfBoundsException {@code index} is < 0 or >= size
     */
    @Override
    public byte byteAt(int index) {
      // We must check the index ourselves as we cannot rely on Java array index
      // checking for substrings.
      checkIndex(index, size());
      return bytes[bytesOffset + index];
    }

    @Override
    byte internalByteAt(int index) {
      return bytes[bytesOffset + index];
    }

    @Override
    public int size() {
      return bytesLength;
    }

    @Override
    protected int getOffsetIntoBytes() {
      return bytesOffset;
    }

    // =================================================================
    // ByteString -> byte[]

    @Override
    protected void copyToInternal(
        byte[] target, int sourceOffset, int targetOffset, int numberToCopy) {
      System.arraycopy(
          bytes, getOffsetIntoBytes() + sourceOffset, target, targetOffset, numberToCopy);
    }

    // =================================================================
    // Serializable

    private static final long serialVersionUID = 1L;

    Object writeReplace() {
      return ByteString.wrap(toByteArray());
    }

    private void readObject(@SuppressWarnings("unused") ObjectInputStream in) throws IOException {
      throw new InvalidObjectException(
          "BoundedByteStream instances are not to be serialized directly");
    }
  }
}